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Stability analysis for extended models of gap solitary waves

J. Schdmann and A. P. Mayer
Institut fir Theoretische Physik, UniversttRegensburg, D-93040 Regensburg, Germany
(Received 13 September 1999

A numerical linear stability analysis has been carried out for stationary spatially localized solutions of
several systems of coupled nonlinear partial differential equatiebE’s) with two and more complex vari-
ables. These coupled PDE’s have recently been discussed in the literature, mostly in the context of physical
systems with a frequency gap in the dispersion relation of their linear excitations, and they are extensions of the
Mills-Trullinger gap soliton model. Translational and oscillatory instabilities are identified, and their associated
growth rates are computed as functions of certain parameters characterizing the solitary waves.

PACS numbes): 42.65.Tg, 42.81.Dp, 42.70.Qs, 42.65.Sf

[. INTRODUCTION recently[20,21,16,7,8 For the MT equations and the PDE’s
describing resonant coupling between fundamental zone-
In nonlinear physical systems that have frequency gaps iboundary modes and their second harmonics, this analysis
the dispersion relation of their linear excitations, there can béas revealed that the gap solitary waves are stable in certain
stationary or slowly moving nonlinear modes that are sparegions of parameter space, while in others, the dominant
tially localized and have frequencies outside the frequencyole in the instability found here is played by complex eigen-
bands of the linear modes. Band gaps can be generated bglues of the corresponding linearized syst¢g®,16,7.
periodic modulations of continuous physical systems or byThese eigenvalues have imaginary pdftequencies much
discreteness. Such nonlinear modes have been discussedlanger than their real partgrowth rateg and their associated
various physical contexts in both discrete and continuougigenvectors are normally extended far beyond the spatial
systems, and in particular in nonlinear optics. Interest inextension of the solitary wave. This type of instability was
these gap solitary waves has been strongly enhanced by risund earlier in continuous systeni22,23 and a discrete
cent experiments on Bragg grating fibers by Eggletbal.  system24], and has been termed ascillatory instabilityas
[1], and by the fabrication of optical band-gap materi@ls ~ opposed totranslational instabilitieswhich are associated
For the latter, stationary gap solitary waves have been prewith a purely real eigenvalue of the corresponding linearized
dicted in two and three dimensiofi3]. system and with eigenvectors localized at the solitary wave.
If the effects of periodic modulation and nonlinearity are  Frequently, the stability of solitary wave solutions is
of the same order of magnitude, gap solitary waves emergeested by numerical simulations, i.e., numerically integrating
as solutions of a system of coupled partial differential equathe PDE’s with initial conditions corresponding to the soli-
tions (PDE’s) for the complex amplitudes of plane or guided tary wave with possibly some perturbation. While this
waves with wave vectors at the boundary of the Brillouinmethod is suitable for the identification of strong instabilities
zone corresponding to the dispersion relation of the lineaand to follow up the evolution of the instability over longer
modes of the physical system. In the one-dimensional cas¢éime scales, it maynot be reliable in general for several
to which we shall confine our discussion here, and for third+easons. First, weak instabilities may reveal themselves only
order nonlinearity, analytical solutions of the correspondingafter very long integration times. If the initial perturbation of
PDE'’s are known for stationafyt] and moving5,6] solitary ~ the solitary wave solution has no overlap with the eigenvec-
waves. In the following, we shall call these PDE’s Mills- tors associated with the weak instabilities, they would have
Trullinger (MT) equations. In field theory, PDE'’s of this type to evolve essentially out of numerical noise, and may be
have been studied earlier, and solitary wave solutions hadoncealed by numerical instabilities. This applies in principle
been found in one and higher dimensiofsee the corre- to any nonlinear system that supports solitary waves. Sec-
sponding references in Ref7]). The massive Thirring ond, the large spatial extension associated with oscillatory
model[8] constitutes an integrable limiting case of the MT instabilities causes a sensitivity of the stability to the bound-
equationd9]. ary conditions applied to the spatial domain in the numerical
Various extensions and modifications of these equationsimulations. For example, if periodic boundary conditions
have also been studied, including resonant coupling of thare applied, there may be a strong sensitivity to the period-
waves at the Brillouin-zone boundary with their second har-city. As the spatial extension of the eigenvector of an oscil-
monic[10-16, three-wave mixind17], coupling to a diffu- latory instability usually increases with a decreasing growth
sive degree of freedonjl6], additional dispersion terms rate, it is particularly difficult to locate boundaries of stabil-
[18], and the effect of optical rectificatigri.9]. ity in parameter space by means of numerical simulations.
Although solitary wave solutions of these equations haveThird, numerical studies of the spectrum of non-Hermitian
been partially known for a long time, a systematic analysis okigenvalue problems obtained by linearizing the PDE’s
their stability by linearizing the PDE’s with respect to devia- around the solitary wave solutions have found spurious ei-
tions from the solitary wave solutions was carried out onlygenvalues, with finite growth rates and associated eigenvec-
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tors that strongly oscillate in space. Such spurious eigenvahonlinear functions ofu,, o=1,....S, and their spatial
ues occur in large numbers in a treatment of the nonderivatives. Let'S(¢,7)=U(£)exp(—iw,7) be a stationary
Hermitian operator that is based on a discretization of theolitary wave solution of Eq(2.1). Inserting

spatial domain, and corresponds to finite-difference schemes

of num_erlcal S|mula§|on516]. They occur_to a lesser but still U (&,7)=[U (&) +a,(&r)]e @ 2.2
appreciable extent in a treatment that is still based on real-

space discretization but treats the spatial derivatives in Fou- . . .
rier space, thus parallelling beam propagation codes based gio E.q. (2. and.lmearlzmg with respect to the ;mall per-
the split-step method16], and they are also present in a turbationa, , one is led to a system of linear equations of the
scheme that works entirely in Fourier spd@é These find-  [°fM

ings imply that such spuriousumerical instabilitiescan also S

occur in numerical simulations of the time evolution of gap . _ ) o) N

solitary waves, and may then mask physical instabilities of 7, 80(£:7) = E [M(§a (&1 +M 0 (§al,(§,7)],
false instability, when the solutions are actually stable. The o=t 2.3
presence of second derivatives in the evolution equations

largely suppresses such spurious instabilities. A major goal

(1) - r— ;
of this paper is to caution the reader about the use of numer?N€reM2.(¢), j=1 and 2 antr, o’ =1, ... S, are linear

cal simulations for the search of instabilities in gap-solitonOPerators, and* is the complex conjugate @t Defining the

bearing systems. 2S-component vector
The paper is organized in the following way. In Sec. I,
our numerical scheme is described in some detail. Although p(¢,7)=[a;(¢,7), . ...a5é 7),a1(&,7), ... a4 & 1],
it was already explained in R€f16] for the example of gap (2.9

solitary waves in systems with resonant coupling between
fundamental zone-boundary modes and their second harmoherea’ anda” are the real and imaginary parts af re-
ics, we feel that it would be in the interest of completenessspectively, Eq(2.3) can be cast into the form
and reproducibility to give additional details. We also illus-
trate the aforementioned effect of the sensitivity of the P
growth rates of oscillatory instabilities with respect to the —p(&,7)=L(&)p(&7), (2.5
spatial domain sizéthe periodicity in the case of periodic JT -
boundary conditionsfor the example of stationary solitary
wave solutions of the MT equations. whereL is a real linear matrix operator. Consequently, we

Recently Champneyst al. [18] considered an extended may seek complex solutiogsof Eq. (2.5), and construct real
version of the MT equations that contains second spatial desolutions by combiningp+p* and i(p—p*). Inserting
rivatives. These additional terms remove the gap in the linegp(&,7) =q(&)exp(\7) into Eqg. (2.5, one obtains the non-
spectrum of the system. However, these authors were able téermitian eigenvalue problemg=Lg, which we solve nu-
find stationary solitary wave solutions. The stability of sev-merically by discretizing the spatial variable choosing
eral examples of such solitary waves is investigated in Seaquidistant grid point€,=nA¢&, wheren=0,+1,+2, ...,
ll. Furthermore, we introduce additional second-derivative+N. The spatial derivatives are treated in two alternative
terms that again open a gap in the linear spectrum, albeitays: The first consists of replacingy(£)/9¢ at gridpoint
with a complicated structure. For this system, a family of¢=¢_ by
multihump solutions is found. It is shown that, depending on
a parameter that does not influence the shape of the solitary _
wave, the time evolution of the latter is dominated either by {a(én 1) —al&n-)H(289), 2.8
translational or oscillatory instability. . — )

In Sec. IV, our numerical scheme is applied to the threeaNd likewisedq(&)/a¢° by
coupled PDE'’s studied by Madt al.[17] in connection with
gap solitary waves in the presence of second-order nonlin- {q(€nr1) +a(En—1) —2q(E) HAE?. (2.7
earity under conditions of three-wave mixing. Here it is used

for a precise determination of the boundaries of stability. AThis simple discretization allows for the implementation of

short discussion ends the paper. various boundary conditions at the edges of the spatial do-
main *L=*NA¢. The second way of treating the spatial
Il. NUMERICAL METHOD derivatives only applies to periodic boundary conditions.

_ . _ . _ Here the derivative is carried out in Fourier space. This cor-
The evolution equations considered in this paper are OFesponds to replacing'q(£)/a& at gridpointé= &, by the

the general form expression
U, =N, ] 2. g
i—u,=N,[uq, ...,ug], . .
I > Dia(ém), 2.9
=—N+1
whereo runs from 1 toS uq, . .. ,ugare complex functions

of time 7 and a spatial coordinaté, and Ny, ... ,Ng are  with
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i for m=n
D(l):L Cmenl sin(w(m—n)/N) (2.93
ULV (—1) i 1 coga(m=n)N) for m#n,
1
—(2N?+1) for m=n
ar 2 6
o=l =
—1)m-n f .
Y codmm=myiNy| O ™70

This treatment of the spatial derivatives is analogous to thatates\’ show in fact strong oscillations as functionslofin

this second approach considerably reduces the number @f e the most unstable one at a rangd ef9.5, where the

spurious eigenvalues as compared to the first one. solitary wave solution has already decayed to almost zero, no
In this way, a matrix eigenvalue problem is obtained. Thelonger plays this role dt = 12; even for this large range, it is

eigenvalues and eigenvectors of the corresponding NORyot yet clear which branch is the one that has the maximal
Hermitian matrix are determined by standard dmgonahzaﬂorgrowth rate.

routines. In the systems we are considering, the spectrum of T cope with this problem, we apply and extend an ap-

eigenvalues has the following property:NEA"+iN"is an  proach which was devised earlier for a discrete sygt4i
eigenvalue oL, so areh’—iA" and —\"Xi)". Inthe fol- |t takes advantage of the fact that at distances far from the
lowing, we only consider those eigenvalues that have nonycation of the solitary wave, the operatoris independent

negative real and imaginary parts. _ , . of & and its eigenvectors are linear combinations of the form
The eigenvectors associated with oscillatory instabilities

usually have a spatial extension that strongly exceeds that of J

the solitary wave itself. With a decreasing growth rate, their q(&)=2, c;ekiMaw;(n)= ‘W(N,)(c))j=y, (21D
spatial width increases. Consequently, it is very difficult to =1 o

determine accurately the growth rates of weak oscillatory . .

instabilities with the type of calculation described above thafnvolylng wave number; Wh.'Ch are the roots Of, the poly-
works with a finite length 2 of the spatial domain. This is nomial defL (k) —A1], andJis the degree of this polyno-
illustrated by two examples of stationary solitary wave solu-mial. L (k) is obtained from the operatdr by taking the
tions of the MT equations latter at distance§— o0, and replacing anth spatial deriva-
tive by (ik)". The vectorsy; are normalized solutions of the

Ju Ju i i
i( &; ag U+ [Ny |24 Nylu|2u, =0, linear homogeneous equations
(2.103 [L(kj)—A1]w;=0. (2.12
fdu_  du_ ) , For a givenq, the coefficientg; may be determined from
N5 a2 +uy +[Ng|u_[*+Nyfu,|[*Ju_=0, Eq. (2.12) at gridpoint&y. In case ofJ=2S as in the MT
(2.10p  €quations2.10, W is quadratic. Hence
- . _ ; alk(\)AE2S 2S
whereN; and N, are constant coefficients agdand 7 di-  d(én+1) =W(N\,€y) diagoje )i21(€§)21
mensionless variables. Solitary wave solutions of these equa- _ . ik(\)AZ) 2S 1
tions are known analyticallj4,5]. A detailed analysis of the =W(X,¢y) diagoje )iZaW(N &n) a(én),
stability of stationary and moving solitary solutions of these (2.13
equations was recently given by Barashenkov and co-
workers[20,7] . where, in generalgj=1. However, in order to suppress ex-

In Fig. 1, the dependence of eigenvalues associated witponentially increasing partial waves in the iterative scheme
oscillatory instabilities on the length is shown. For com- we puto;=0 for kj(\)"<0. In systems with second order
parison, the spatial extension of the solitary wave is alsspatial derivatives)J>2S. Here, we simply omit the terms
displayed. Since the separatiahé between neighboring with kj(\)"<0 in Eq.(2.11) and, once againy is quadratic
gridpoints has to be sufficiently small to resolve the spatiabnd we may apply Eq2.13 as described. For higher deriva-
variations of the solitary wave and the eigenvectors, thdives, the coefficient; have to be computed from Eq.
lengthL is limited by the maximally tractable matrix size in (2.11), also involvingq(¢,) for n<N.
the numerical diagonalization. While eigenvalues with com- Expression(2.13 may be inserted into Eqg2.6) and
paratively large growth rates converge at valuek tfat can  (2.7), giving the derivatives at gridpoird, in dependence on
be treated with reasonable numerical effort, this is not the\, q(éy_1), andqg(&y), but not onq(éy41). The derivatives
case for eigenvalues with smaller growth rates. The growtlat gridpoint¢_,; are treated in the same way. By this
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0.05f (0 ' ' ' ] eigenvalues corresponding to the dominant instabilities. We
¢ do this by inverse iteration, as described in R28], starting
0.04 Frxwxw—wmwrx e wnwww with initial guesses of\, for the eigenvalue and, for the
0.389 eige_nvector, wheref; -qo=1. The i_nitial guess is usual_ly_
0.03¢ 0.388@ 3 motivated by the results of calculations for a large but finite
< 3 9.5 1.5 3 spatial domain size. In thath step of the iteration, the ei-
0.02f 3 genvalue is updated according to
0.01 bygost oo s °°°-§ o
THITHHTHITH e e
0.00t ! F i3 1TEE Qu Va1
9.5 10.0 1?_'5 1.0 1.3 wheres=1, andv, ,, satisfies
" | . | [LO) =N AV, =0, (2.16
[ (b) ! i . .
10F , = o__j\\/___ ] The vecior Qui1 is then defined as g, ;
[ * —10 o 10 :V,u,Jrl/\/Vp,+l'V,u+l'
8r ¢ . In the case of diagonalizable matrices that are indepen-
) i ] dent of\, this procedure converges quickly. The reason, as
< 6¢f ] explained in Ref[25], is easily seen when expressing, ;
45_ ] andq,=23,a,a, as a linear combination of the normalized
E ] eigenvectors ofL. If \ , is close to the eigenvalu?éo of £
2 EEEEE 2 . and sufficiently distant from the other eigenvalues, n
of . . . ] #0, then
9.5 10.0 10.5 11.0 1.5 o @
n
L V1= = ay~= e (2.17
N AN, A=A,
0.05Fy ™ R ' ; L ,
E . 2 ] However, if £ is dependent on the eigenvalue, a conver-
0.04F 2 o—\ 3 gence of the procedure is not guaranteed. It deteriorates as
Foo, 1o o 10 the corresponding eigenvalue moves close to other eigenval-
0.03F Tteesy, estvbrertaiegd ues of the matrix. To improve convergence, it is often favor-
— Ere . IREAR D iri ; gt : o able to vary the initial guess for the eigenvalue and eigen-
0.02F Ty ¥ FERE D E vector and to modify the update of the eigenvalue by
RN ' i i ! ! !; ; choosing the parameter in Eq. (2.15 to be smaller than 1.
0.01 E L i ! i ' ! : i i o ST 3 Further statements on the convergence of the procedure in
) ;fff; ;Nf’f:ﬂ*“ +If§++§ the case off depending on\ are made in Appendix A.
0.00FE.* +%t%s +, e ] Eigenvalues determined in this way for solitary waves of the
95 100 105 11.0 115 12.0 MT equations, being of the form
: U&7 =UL(Oexp—iwn), (2183
FIG. 1. Dependence of the eigenvaldes A’ +i\" associated )
with an oscillatory instability on the domain site MT equations with
(2.10 with N;=1 and N,=0. w=-0.9 [(3) and (b)] and .
=-0.1 (0). Inlays in (b) and (c): real (solid) and imaginary U, (§=UZ(E=U($), (2.18b

(dashedlparts ofU , . Branches of eigenvalues that are dominant at o ) )
L =10 are shown as diamonds or crosses. The corresponding valudée shown in Fig. 1 as horizontal lines.
for L= are indicated by thin solid lines.

Ill. HIGHER-ORDER DISPERSION TERMS
method, one is led to an eigenvalue problem for a mafrix IN THE MT EQUATIONS
of dimension £Nx 4SN, depending explicitly on the eigen-

value, In a recent work, Champnet al. [18] analyzed an ex-

tension of MT equations which differ from E.10 by the
additional termDd?u, /9&? on the left-hand side of Eq.
(2.108 andD d%u_ /3&? on the left-hand side of E¢2.10B.
whereq now stands for a 8 N-component vector. This addition removes the gap in the linear dispersion rela-
A determination in this manner of all eigenvalues assocition of Eq.(2.10 (Fig. 2. However, the authors were able to
ated with an instability would require a search of all routes inshow by numerical analysis that stationary single solitary
the complex plane of the secular equation following fromwave solutions of the form of Eq2.18 exist on certain
Eq. (2.14. This would go beyond our numerical capacities.curves in the »-D plane. Once a stationary solution
Instead, we use this approach to accurately determine certaih(¢; w,N;,N,,D) is found, a solutionU(¢;w,N;,N5,D)

[£(\)-A1]q=0, (2.14
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TABLE I. Eigenvalues corresponding to instabilities with maxi-
mal growth rates for the solitary wave solutions given in Fig. 3 of
Ref. [18].
D N, N N
1.34759%° 0.0 1.96 0.0
1.0 0.53 1.75
6.0 1.01 2.77
0.53350% 0.0 191 0.0
1.0 0.50 2.60
6.0 0.95 4.06
FIG. 2. Linear dispersion relation corresponding to E}j1).
Dashed lineD=1 andA =0. Solid line:D=1/4 andA =1. 0.30595% 0.0 1.96 0.0
1.0 0.48 3.34
6.0 1.18 4.46

for the same values ab and D but different values of the

constants in front of the nonlinear terms may be obtained byvalues given in Ref[18]. Frequencyw=—0.8, N,=1.

a simple rescaling. This also applies to the stationary solu-

tions of Eq.(3.1) below. Because of the fairly large growth rates, it was possible to
The three stationary single solitary wave solutions givendetermine these eigenvalues in calculations for a finite spa-

in Figs. 3a)—3(c) of Ref.[18] are found to be unstable by tjal domain and periodic boundary conditions. Special atten-

our numerical stability analysis for different values f. tion has to be paid to the fact that in this system, eigenvec-

(In the whole of this sectiorlN,=1.) The eigenvalues cor- tors associated with purely real eigenvalues can still have a

responding to the dominant instabilities are given in Table |.|arge Spatia| extension because of the absence of a gap in the

linear spectrum. This has in fact been observed in the case of

1.0 T T T T T ™ small growth rates.
() ’ ] When considering the evolution equatioi2s10), with or
08[ » > ] without an additional second-derivative term, one has to bear
] in mind that their linear part correctly describes the disper-
06 - ] sion relation of the linear excitations in the underlying peri-
=< o ¢ ] odic physical system only for wave vectors near the edges of
0.4 . ] the Brillouin zone. For small values of the paraméf®}, the
° ] wave vector of the radiation coupling resonantly to a solitary
0.2} -+ M e ] wave becomes large and, with decreagidg one leaves the
c,op 248 i iﬁ 'EERE regime of the validity of the envelope approximation which
0.0 Luaia L - A is the basis for Eq(2.10. A possibility to avoid such prob-
0 1 2 3 4 5 6 lems and keep the gap open even at large wave vectors is to
Ni/N; add further correction terms to the left-hand sides of Eq.
(2.10, for example by considering terms that lead to the
1.0 % following equations:
0.8
3 Ju Ju
®  * . ] | —— 2 2
o6k _— ] |( Fr P +u_+[Nq|u,|*+Nyu_|?Ju,
- * * Moy
< won oo owme Bowowod 2 2
04r .=’ ] B e e (3.19
* ] 9¢? agr '
= - -
0.2 RS
0.0 bcstaniaccesiiniininee & ] [ou_ du_ 5 2
—— —— | +u, +[Ny|Ju_|*+N _
o 1 > 3 4 5 6 |( FEFT: Uy +[Ngfu_| o|uy[“Ju
N,/N
/N2 Fu_ du,
FIG. 3. Dependence oN;/N, of certain eigenvalued =\’ +D (952 +A 552 =0. (3.1b

+i\" occurring in the linear stability analysis of a multihump soli-

tary wave solution of Eq(3.1). D=1/4, A=1, andw=0. We i ) .

show translational instabilitydiamonds, oscillatory instabiliies 1he additional terms involving the complex parameteare
(crossey and internal modegstars. Hatched area: continuous Motivated in the Appendixes for an extension of the original
spectrum ofL. The inset shows the intensitgolid line) and the ~ Mills-Trullinger system, where, however, this coefficient
real (dashed ling and imaginary(dotted ling parts of the solitary would be too small to open the gap, and for the continuum
waveU atN;=1 andN,=0. treatment of the diatomic chain. They preserve the conserva-
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FIG. 4. Time evolution of the multihump stationary solitary
wave of Fig. 3.N;=0 (@ and N;=6 (b). Inlay: |u,(&,10)
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corresponding to the translational instability.

tion laws of the MT equations. In particular, the ang@48

Both the growth rate and the eigenvector of the instability
have been precisely identified in simulations for the case of
the translational instabilitysee the inlay of Fig. @)]. This
has been possible to a less satisfactory extent in the case of
oscillatory instability, because of the presence of several
complex eigenvalues in close vicinity to each other, and be-
cause of the fact that simulations can only be done for a
finite spatial range. Nevertheless, the growth rate of the
dominant oscillatory instability was identified over a certain
time interval.

For very small values ol andD, chosen such that there
is still a gap in the spectrum of linear excitations=0.3,
D=0.0(i); A=0.3,D=0.01(ii); andA =0.3, D=0.1 (iii )],
single-hump solitary wave solutions have been found having
shapes very similar to that of the Mills-Trullinger solutions.
The other parameters in Eq2.18 and(3.1) have been cho-
sen,w=0.5, N,=1, andN;=0, in order to be close to the
integrable case. In the numerical stability analysis applied to
solutions as described in Sec. Il for several finite raniges
and periodic boundary conditions, no eigenvaluesvith
nonzero real parts have been found in casexcept spuri-
ous ones which are associated with the discretization. In
cases(ii) and (iii), eigenvalues with very small real parts
[\"]<0.02 occur with\’ depending onL in a somewhat
random fashion. This behavior also occurs in analogous in-
vestigations of the MT equations in a parameter region
where the solitary waves are supposed to be stable. There-
fore, we expect the three solutioiig—(iii) to be actually
stable.

In addition to the above linear stability analysis of single-
hump solutions of Eqgs(3.1) which are close to the MT
solitary waves, numerical simulations have been carried out
on the evolution equations.1) with initial conditions atr
=0 corresponding to a pulse solution with=D=0 to

reduces Egq93.1) to ordinary differential equations that have monitor the evolution of MT solitary waves exposed to the
a first integral[see Eq.(B5)].

influence of small second-order derivative terms. The param-

In the following, we choosé to be real for convenience eters were agaim=0.5, N;=0, andN,=1. In the case\
in the numerical calculations. The linear dispersion relation=0.3 andD=0.1 (open gap the pulse largely retains its
for the system of equation8.1) is shown in Fig. 2. For fixed  shape over time intervals of>200 after having shed some
values of the parameters in E48.1), a one-parameter fam-  yagjation. ForA =0 andD =0.1 (closed gap the pulse splits
ily of gap solitary wave solutions of the form of EQ.18 is  g¢ter comparatively short times-20) in a scenario similar
found. As an example, the solution with frequenay-0 is 4 hat of Fig. 4a). These findings indicate that, in the ab-

shown in Fig. 3(inlay). It exhibits a multihump structure.
When analyzing the stability of this solution as a function of
N, for fixed N,=1, it was found to be always unstable, but
the character of its instability changes stronglyNgsis var-

sence of a gap, the second-derivative term involving the pa-
rameterD plays a destabilizing role.

ied. For small values diN,|, a translational instability domi- 1V. GAP SOLITARY WAVES VIA THREE-WAVE MIXING

nates with a growth rate amounting4e0.8 atN,=0, which
dramatically increases abl; becomes negative. AN,
~3.8, the translational instability terminates and, in addition
to three internal modes, an oscillatory instability remains,

Stationary gap solitary waves have also been studied in
systems with second-order nonlinearity. Recently, Makil.
[17] considered a three-wave mixing situation described by

though with a very small growth rate. Consequently, solitaryn€ following evolution equations:

wave solutions of Eq€3.1) having the same functional form
exhibit completely different instability scenarios for different
values ofN;. This has been verified in numerical simulations
(Fig. 4). The translational instability leads to a splitting of
the initial multihump pulse shape, accompanied by a consid-
erable amount of radiation. In contrast to this behavior, the
oscillatory instabilities lead to a decay of the solitary wave
into short-wavelength fluctuations. In these simulations, the
instabilities were not seeded, but developed out of numerical
noise.

AUy
—+ —7 | +uy+uzu;=0, (4.1a
29
Ju, .
__(9_5 +uy+uguy =0, (4.1b

2

U P
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growth rates associated with the oscillatory instability van-

0.15 o R D=0.5 cocemrmnn
© ‘e Bl ish. Therefore, the curves in Fig. 5 have been truncated at an
D=2.0 ------. arbitrary point at their left end. The critical valueg are
0.10 ] considerably larger than those following from the stability
< boundaries given in Fig.(8) of Ref.[17] for all four values
of D, which illustrates the difficulty of detecting weak oscil-
0.05 ] latory instabilities in numerical simulations.
In our numerical calculations of the eigenvalues associ-
0.00 . \ s ated with the oscillatory instability, we find that the point of
5 4 6 8 10 the\"(q) curve, where the growth rate’ vanishes, is situ-
q ated inside the continuous spectrum. For the MT equations,
Barashenko\et al. [20] showed that the oscillatory instabil-
1.4 (7 ST ity emerges at the point of degeneracy of two internal mode
&::%&%&%::‘:%@:z:&’?????z% ftri/aquencgiles with a I[s)mall sepa?ation frgm, but not inside, the
PRSI ; ; ;
O G O S S SO P P 00 continuous spectrum. With our numerical tools, we were not
1.2 FRRSSEIIRSEAR IS ble to identify a mechanism for the creation of an oscilla-
TRy able (0 identy a mechar
< <52 tory instability in the continuous spectrum.
1.0F
®) V. CONCLUSION
0‘82 Alf é é 10 In summary, a numerical linear stability analysis has been

carried out for stationary solitary wave solutions of evolution
q equations that may be regarded as extensions of the Mills-

FIG. 5. Dependence of the eigenvalues A’ +i\" associated | rullinger equations describing gap solitary waves in sys-
with an oscillatory instability on the parametgfor stationary soli-  t€ms with third-order nonlinearity. Higher-order dispersion
tary solutions of Eq(4.1), k=0.1. Squares: extrapolated values for terms have been introduced into these equations, extending a
q.. The vertical lines in(a) indicate the values af, following from  model considered in Ref18] [model(i)], and a model de-
Fig. 4b) of Ref.[17]. The total hatched region ifb) is part of the  scribing a three-wave mixing configuration in a system with
continuous spectrum of the operator and the doubly hatched second-order nonlinearity discussed in R&f] [model(ii)].
region is part of the continuous spectrum of the operstf? in Eq.  In certain limits of the parameters occurring in these equa-
(2.3. tions, they reduce to the integrable classical field equations

of the massive Thirring model.
In the limit of largeq, they reduce to the classical field equa-  In model (i), it has been found that by varying the ratio
tions of the massive Thirring model, i.e., the integrable limitpetween the two coefficients in front of the nonlinear terms
of the MT equationgEq. (2.10, with N, =0]. that represent cross-phase and self-phase modulations, the

Stationary solitary wave solutions were obtained via thenstability scenario of the same multihump solitary wave so-
ansatzu,(¢,7)=U,(§)exp(-iw,7), =1, 2, and 3, with |ution can be strongly changed. In the case of dominant
U;=-U3, Ujreal, andws=2w;,=2w,. To follow the no-  cross-phase modulation, the solitary wave is highly unstable
tation of Ref.[17], we introduce the parametdr as k= to a splitting into two pulses. When self-phase modulation
—w1. Mak et al. checked the stability of these solutions by dominates, oscillatory instabilities with small growth rates
simulation of their propagation. In this way, they determinedremain. In model(ii), boundary points of oscillatory insta-
boundaries of stability in two-dimensional subspaces of theilities have been computed on lines in parameter space with
three-dimensional parameter space. a precision that is difficult to achieve in numerical simula-

We have applied the numerical linear stability analysistions. It has been found that the growth rate associated with
described in Sec. Il to stationary solitary waves on certairthe oscillatory instability vanishes at points in parameter
lines in theg-D plane of this parameter space. For this pur-space when the corresponding frequency lies in the continu-
pose, the solitary wave solutions have been recomputed withus spectrum of the linearized evolution equations, indicat-
the help of the shooting method, making use of the fact thaing that the mechanism discovered by Barashen&bal.

the quantity [20] for the hirth of the oscillatory instability in the MT
TRE equations does not seem to apply here. It is still an open
(9 . . . .y - -
| =2(k+ U3)|U1|2+U§+ U’{2+(4k+q)U§— D(a_;) question what leads to this type of instability in this system.
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APPENDIX A: CONVERGENCE PROPERTIES OF THE

€1
MODIFIED INVERSE ITERATION PROCEDURE [wz—wé+0(772)]Et+wzs—[l+0(7i)]E:
0
Assuming that the non-Hermitian matri&(\ ,) can be  w: JE. c? , 0°Ex
diagonalized at each step of the iteration, the following t|4E[1+O(77)]—(9§ + 8—0[1+O(7i )] T

statements concerning the convergence of the iteration can )

i - €18 - 0°E+ )
be made. Leh, be the correct eigenvalue we wg_nt the pro 925182 xig = 1 (nonlinear term=0,
cedure to converge to, antl, =\ ,—\, . In addition, we €9 ag
define the vectors,,, n=1, ... ,48N, as the right eigenvec- (B1)

tors of the matrixZ(\,) normalized according ta@; - a,

=1 andb}, n=1,... 58N as left eigenvectors of the ma- where «=[3(3G/2)2+ &o(w/c)?]/[(3G/2)2—&o(w/c)?]°.
trix £(\,), such thab’,-a,= . & is the right eigenvec- Note that there is no first-derivative temvE . /9, and that
tor andb}, the left eigenvector associated with the eigenvalughe coefficient in front 06°E - /9> may be complex with a
X, . We also assume that the initial guess for the eigenvalughase factor different from the one in front Bf. . Due to

is already close ta., and not close to other eigenvalues of the factore &5, the coefficient in front of the second deriva-
L(\,). Representing the vectors, as linear combinations tive of E= in Eq. (B1) is much smaller than the one in front

of the vectorsa, andb,,, and expanding in powers df,,, of the second derivative d. . . .
one finds thati) if b?-qp is not small(i.e., not to first or This need not be the case in analogous equations arising

higher order inAy), then g, =ag+O(Ag); and (ii) A, in the continuum treatment of stationary spatially localized

-~ A A2 h is the f . vibrations with frequencies in the phonon gap of a diatomic
—(1—0x)A,+0O(A)), whereo is the free parameter in jinaar chain, Based on such a continuum approximation, gap

Eg.(2.19, and solitary waves in diatomic chains with quartic anharmonicity
(third-order nonlinearity were discussed in Ref$26—-28.

We follow and extend these derivations here. In the follow-
ing, we consider a diatomic chain with harmonic on-site in-
teraction, nearest and second-nearest neighbor intersite inter-
action, and quartic anharmonic on-site and nearest-neighbor
intersite interactionu(l,«) is the displacement of the par-
From the latter statement we may conclude that for matriceticle belonging to sublatticac=1 and 2 in the elementary
that do not depend oR, the inverse iteration scheme con- Celll. The particle displacements have to obey the equations
verges rapidly ifo is chosen to be 1. For values of be- ~ Of motion

tween 1 and 0, the convergence is slower but will still take .

place. In the case of the matri% depending o\, conver- [M—AM]u(l,1)=—¢1{2u(l,1)—u(l,2) —u(1 - 1,2)}

J
K:]-_bz)c'[ﬁé()\)h—x*}ao- (A1)

gence may not be guaranteedki 1, even if one starts w!th —[do—Adl{2u(l,1)—u(1+1,1)
an initial guess close to the correct valng . However, it
may be achieved by choosing the parameteppropriately. —u(l-21,1)} -[Ky—AK]u(l,1)

Among the assumptions made to reach statemg@nésd _ 3
(i), the one concerning sufficient distance of the initial guess Ka[u(h, D= ®{Lu(l, 1)
from other eigenvalues of is probably the most difficult to —u(1,2)1¥+[u(l,1)—u(l-1,2)13,
meet in the systems investigated here. Therefore, conver-

gence can be very slow, and the eigenvalues and eigenvec- (B23)
tors may undergo considerable jumps from one iteration step .
to the next. [M+AM]u(l,2)=—¢{2u(l,2)—u(l,1)—u(l +1,1)}
~[¢a+Agl{2u(1,2)~u(1+1,2)
APPENDIX B: LINEAR CORRECTIONS TO THE —u(l=1,2)} = [Ka+AK]u(l,2)
MT EQUATIONS —Ka[u(1,2)]°=®{[u(l,2)

Linear correction terms to the MT equations can be de- —u(l+ 1,1+ [u(l,2)—u(l,1)1%.

rived in the system originally considered by Mills and Trul- (B2b)

linger [4], namely, the propagation of light through a me-

dium with a periodically varying dielectric constan{z).  The deviationsAM from the average particle mass and the
Expandinge in a Fourier series, keeping only the lowest two deviationsA¢ and AK from the average second-nearest
Fourier componentse(z)=¢gy+2e, c0s(G2)+2¢,c0s5(X5z  neighbor and on-site force constants are sufficiently small
+¢), whereg is a constant, introducing a stretched coordi-that the linear terms resulting from the deviation from the
nate ¢, letting €;, €, and d/d{ be of first order in some monatomic chain are of the same order of magnitude as the
expansion parametey, and expanding to fourth order in, nonlinear terms. In the latter, we choose the on-site force
one finds the following extended version of equati¢8d) constant to be the same for the two sublattices.

of Ref.[4]: Stationary solutions are sought with the ansatz



5838 J. SCHQ.LMANN AND A. P. MAYER PRE 61

u(l,k;t)=(—1)'e "'A (x(I))+c.c., (B3) AN'=—Apl¢p,, N"=1/2,

and the rotating wave approximation is used, which corre- _ _
sponds to neglecting higher time harmonics. The frequency Ni=3[®+K/Al ¢1, Na=2Ny,
o has to be equal to or close to the frequengy at the
Brillouin zone boundary of the diatomic chain in the absence
of nonlinear terms, andM,A ¢,AK=0 [a)g=(2¢1+4¢2
+K5)/M.] In Eq. (B3), x(I) is the center of mass of tHéh
elementary cell with its atoms at their rest positions, and wi
definea=x(l+1)—x(I) as the lattice constant of the chain.
One may now letA,(x) be continuous functions of, and
expandA, (x(1=1))=A, (x(1))xadA (x(1))/ox+---. De-
fining new variabled) .. (x/a) = A;(X) £iA,(x) and combin-

N3=3[_(D+K4/4]/¢1,

and ¢é=x/a. Derivatives in the nonlinear terms have been
éleglected. It may be noted that in the special clse
=4®, the additional nonlinear term in EgB4) vanishes.
Even in the presence of this term, one may seek stationary
solitary wave solutions employing the ansatz =U* =U.

The complex ODE resulting from EdB4) then has a first

ing Egs.(B2a) and (B2b), we arrive at the following equa- "ed"al
tions up to terms of orde®(a®,A pa?): N U 1 e
ou 9 2y I=—0[U[*+ §(U2+U*2)+D I +§{A*(a—§)

QUL =2 —— F AU+ D— o+ (A=A — -

‘ ¢ ¢ A Ju*\? s JU* 32U gU g2U*

(93U+ 9 | (9—(9—2——0_)—72—

*Si (953_+[N1|Ui|2+N2|U:|2]Ut+N3U§FU§, § §& d¢ & 0¢
1 1
(B4) + 5 (N1 N2)[U[*+ 7 Ng[U* 44 U], (B5)

ith coefficients
W el It should also be noted that E@4), like Eq. (B1), does not

Q=M(w?- wg)/dh, A=[AMw?—4Ap—AK]/ ¢y, contain a first derivative cross term, i.e., a ter@U .. /9¢. If
there were such a term, the reduction =U* would no
D=¢,/¢,, S=1/6, longer give rise to a first integral of the form of E@5).
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