
PHYSICAL REVIEW E MAY 2000VOLUME 61, NUMBER 5
Stability analysis for extended models of gap solitary waves

J. Scho¨llmann and A. P. Mayer
Institut für Theoretische Physik, Universita¨t Regensburg, D-93040 Regensburg, Germany

~Received 13 September 1999!

A numerical linear stability analysis has been carried out for stationary spatially localized solutions of
several systems of coupled nonlinear partial differential equations~PDE’s! with two and more complex vari-
ables. These coupled PDE’s have recently been discussed in the literature, mostly in the context of physical
systems with a frequency gap in the dispersion relation of their linear excitations, and they are extensions of the
Mills-Trullinger gap soliton model. Translational and oscillatory instabilities are identified, and their associated
growth rates are computed as functions of certain parameters characterizing the solitary waves.

PACS number~s!: 42.65.Tg, 42.81.Dp, 42.70.Qs, 42.65.Sf
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I. INTRODUCTION

In nonlinear physical systems that have frequency gap
the dispersion relation of their linear excitations, there can
stationary or slowly moving nonlinear modes that are s
tially localized and have frequencies outside the freque
bands of the linear modes. Band gaps can be generate
periodic modulations of continuous physical systems or
discreteness. Such nonlinear modes have been discuss
various physical contexts in both discrete and continu
systems, and in particular in nonlinear optics. Interest
these gap solitary waves has been strongly enhanced b
cent experiments on Bragg grating fibers by Eggletonet al.
@1#, and by the fabrication of optical band-gap materials@2#.
For the latter, stationary gap solitary waves have been
dicted in two and three dimensions@3#.

If the effects of periodic modulation and nonlinearity a
of the same order of magnitude, gap solitary waves eme
as solutions of a system of coupled partial differential eq
tions ~PDE’s! for the complex amplitudes of plane or guide
waves with wave vectors at the boundary of the Brillou
zone corresponding to the dispersion relation of the lin
modes of the physical system. In the one-dimensional c
to which we shall confine our discussion here, and for thi
order nonlinearity, analytical solutions of the correspond
PDE’s are known for stationary@4# and moving@5,6# solitary
waves. In the following, we shall call these PDE’s Mill
Trullinger ~MT! equations. In field theory, PDE’s of this typ
have been studied earlier, and solitary wave solutions
been found in one and higher dimensions~see the corre-
sponding references in Ref.@7#!. The massive Thirring
model @8# constitutes an integrable limiting case of the M
equations@9#.

Various extensions and modifications of these equati
have also been studied, including resonant coupling of
waves at the Brillouin-zone boundary with their second h
monic @10–16#, three-wave mixing@17#, coupling to a diffu-
sive degree of freedom@16#, additional dispersion term
@18#, and the effect of optical rectification@19#.

Although solitary wave solutions of these equations ha
been partially known for a long time, a systematic analysis
their stability by linearizing the PDE’s with respect to devi
tions from the solitary wave solutions was carried out o
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recently@20,21,16,7,3#. For the MT equations and the PDE
describing resonant coupling between fundamental zo
boundary modes and their second harmonics, this ana
has revealed that the gap solitary waves are stable in ce
regions of parameter space, while in others, the domin
role in the instability found here is played by complex eige
values of the corresponding linearized system@20,16,7#.
These eigenvalues have imaginary parts~frequencies! much
larger than their real parts~growth rates!, and their associated
eigenvectors are normally extended far beyond the spa
extension of the solitary wave. This type of instability w
found earlier in continuous systems@22,23# and a discrete
system@24#, and has been termed anoscillatory instabilityas
opposed totranslational instabilitieswhich are associated
with a purely real eigenvalue of the corresponding lineariz
system and with eigenvectors localized at the solitary wa

Frequently, the stability of solitary wave solutions
tested by numerical simulations, i.e., numerically integrat
the PDE’s with initial conditions corresponding to the so
tary wave with possibly some perturbation. While th
method is suitable for the identification of strong instabiliti
and to follow up the evolution of the instability over longe
time scales, it maynot be reliable in general for severa
reasons. First, weak instabilities may reveal themselves o
after very long integration times. If the initial perturbation
the solitary wave solution has no overlap with the eigenv
tors associated with the weak instabilities, they would ha
to evolve essentially out of numerical noise, and may
concealed by numerical instabilities. This applies in princip
to any nonlinear system that supports solitary waves. S
ond, the large spatial extension associated with oscillat
instabilities causes a sensitivity of the stability to the boun
ary conditions applied to the spatial domain in the numeri
simulations. For example, if periodic boundary conditio
are applied, there may be a strong sensitivity to the peri
icity. As the spatial extension of the eigenvector of an os
latory instability usually increases with a decreasing grow
rate, it is particularly difficult to locate boundaries of stab
ity in parameter space by means of numerical simulatio
Third, numerical studies of the spectrum of non-Hermiti
eigenvalue problems obtained by linearizing the PDE
around the solitary wave solutions have found spurious
genvalues, with finite growth rates and associated eigen
5830 ©2000 The American Physical Society
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tors that strongly oscillate in space. Such spurious eigen
ues occur in large numbers in a treatment of the n
Hermitian operator that is based on a discretization of
spatial domain, and corresponds to finite-difference sche
of numerical simulations@16#. They occur to a lesser but sti
appreciable extent in a treatment that is still based on r
space discretization but treats the spatial derivatives in F
rier space, thus parallelling beam propagation codes base
the split-step method@16#, and they are also present in
scheme that works entirely in Fourier space@7#. These find-
ings imply that such spuriousnumerical instabilitiescan also
occur in numerical simulations of the time evolution of g
solitary waves, and may then mask physical instabilities
false instability, when the solutions are actually stable. T
presence of second derivatives in the evolution equat
largely suppresses such spurious instabilities. A major g
of this paper is to caution the reader about the use of num
cal simulations for the search of instabilities in gap-solit
bearing systems.

The paper is organized in the following way. In Sec.
our numerical scheme is described in some detail. Altho
it was already explained in Ref.@16# for the example of gap
solitary waves in systems with resonant coupling betw
fundamental zone-boundary modes and their second harm
ics, we feel that it would be in the interest of completene
and reproducibility to give additional details. We also illu
trate the aforementioned effect of the sensitivity of t
growth rates of oscillatory instabilities with respect to t
spatial domain size~the periodicity in the case of periodi
boundary conditions! for the example of stationary solitar
wave solutions of the MT equations.

Recently Champneyset al. @18# considered an extende
version of the MT equations that contains second spatial
rivatives. These additional terms remove the gap in the lin
spectrum of the system. However, these authors were ab
find stationary solitary wave solutions. The stability of se
eral examples of such solitary waves is investigated in S
III. Furthermore, we introduce additional second-derivat
terms that again open a gap in the linear spectrum, al
with a complicated structure. For this system, a family
multihump solutions is found. It is shown that, depending
a parameter that does not influence the shape of the sol
wave, the time evolution of the latter is dominated either
translational or oscillatory instability.

In Sec. IV, our numerical scheme is applied to the th
coupled PDE’s studied by Maket al. @17# in connection with
gap solitary waves in the presence of second-order non
earity under conditions of three-wave mixing. Here it is us
for a precise determination of the boundaries of stability
short discussion ends the paper.

II. NUMERICAL METHOD

The evolution equations considered in this paper are
the general form

i
]

]t
us5Ns@u1 , . . . ,uS#, ~2.1!

wheres runs from 1 toS, u1 , . . . ,uS are complex functions
of time t and a spatial coordinatej, and N1 , . . . ,NS are
l-
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nonlinear functions ofus , s51, . . . ,S, and their spatial
derivatives. Letus

(s)(j,t)5Us(j)exp(2ivst) be a stationary
solitary wave solution of Eq.~2.1!. Inserting

us~j,t!5@Us~j!1as~j,t!#e2 ivst ~2.2!

into Eq. ~2.1! and linearizing with respect to the small pe
turbationas , one is led to a system of linear equations of t
form

i
]

]t
as~j,t!5 (

s851

S

@Mss8
(1)

~j!as8~j,t!1Mss8
(2)

~j!as8
* ~j,t!#,

~2.3!

whereMss8
( j ) (j), j 51 and 2 ands,s851, . . . ,S, are linear

operators, anda* is the complex conjugate ofa. Defining the
2S-component vector

p~j,t!5@a18~j,t!, . . . ,aS8~j,t!,a19~j,t!, . . . ,aS9~j,t!#,
~2.4!

wherea8 and a9 are the real and imaginary parts ofa, re-
spectively, Eq.~2.3! can be cast into the form

]

]t
p~j,t!5L ~j!p~j,t!, ~2.5!

whereL is a real linear matrix operator. Consequently, w
may seek complex solutionsp of Eq. ~2.5!, and construct rea
solutions by combiningp1p* and i (p2p* ). Inserting
p(j,t)5q(j)exp(lt) into Eq. ~2.5!, one obtains the non
Hermitian eigenvalue problemlq5Lq , which we solve nu-
merically by discretizing the spatial variablej, choosing
equidistant grid pointsjn5nDj, wheren50,61,62, . . . ,
1N. The spatial derivatives are treated in two alternat
ways: The first consists of replacing]q(j)/]j at gridpoint
j5jn by

$q~jn11!2q~jn21!%/~2Dj!, ~2.6!

and likewise]2q(j)/]j2 by

$q~jn11!1q~jn21!22q~jn!%/Dj2. ~2.7!

This simple discretization allows for the implementation
various boundary conditions at the edges of the spatial
main 6L56NDj. The second way of treating the spati
derivatives only applies to periodic boundary condition
Here the derivative is carried out in Fourier space. This c
responds to replacing] jq(j)/]j j at gridpointj5jn by the
expression

(
m52N11

N

Dnm
( j ) q~jm!, ~2.8!

with
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Dmn
(1)5

p

2NDjH i for m5n

~21!m2nF i 2
sin„p~m2n!/N…

12cos„p~m2n!/N…

G for mÞn, ~2.9a!

Dmn
(2)52S p

NDj D 25
1

6
~2N211! for m5n

~21!m2nF 1

12cos„p~m2n!/N…

G for mÞn.
~2.9b!
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This treatment of the spatial derivatives is analogous to
in semispectral integration schemes. It has been found
this second approach considerably reduces the numbe
spurious eigenvalues as compared to the first one.

In this way, a matrix eigenvalue problem is obtained. T
eigenvalues and eigenvectors of the corresponding n
Hermitian matrix are determined by standard diagonaliza
routines. In the systems we are considering, the spectrum
eigenvalues has the following property: Ifl5l81 il9 is an
eigenvalue ofL , so arel82 il9 and2l86 il9. In the fol-
lowing, we only consider those eigenvalues that have n
negative real and imaginary parts.

The eigenvectors associated with oscillatory instabilit
usually have a spatial extension that strongly exceeds th
the solitary wave itself. With a decreasing growth rate, th
spatial width increases. Consequently, it is very difficult
determine accurately the growth rates of weak oscillat
instabilities with the type of calculation described above t
works with a finite length 2L of the spatial domain. This is
illustrated by two examples of stationary solitary wave so
tions of the MT equations

i S ]u1

]t
1

]u1

]j D1u21@N1uu1u21N2uu2u2#u150,

~2.10a!

i S ]u2

]t
2

]u2

]j D1u11@N1uu2u21N2uu1u2#u250,

~2.10b!

whereN1 and N2 are constant coefficients andj and t di-
mensionless variables. Solitary wave solutions of these e
tions are known analytically@4,5#. A detailed analysis of the
stability of stationary and moving solitary solutions of the
equations was recently given by Barashenkov and
workers@20,7# .

In Fig. 1, the dependence of eigenvalues associated
oscillatory instabilities on the lengthL is shown. For com-
parison, the spatial extension of the solitary wave is a
displayed. Since the separationDj between neighboring
gridpoints has to be sufficiently small to resolve the spa
variations of the solitary wave and the eigenvectors,
lengthL is limited by the maximally tractable matrix size i
the numerical diagonalization. While eigenvalues with co
paratively large growth rates converge at values ofL that can
be treated with reasonable numerical effort, this is not
case for eigenvalues with smaller growth rates. The gro
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ratesl8 show in fact strong oscillations as functions ofL. In
the case of Fig. 1~c!, the branch of eigenvalues that appea
to be the most unstable one at a range ofL59.5, where the
solitary wave solution has already decayed to almost zero
longer plays this role atL512; even for this large range, it i
not yet clear which branch is the one that has the maxi
growth rate.

To cope with this problem, we apply and extend an a
proach which was devised earlier for a discrete system@24#.
It takes advantage of the fact that at distances far from
location of the solitary wave, the operatorL is independent
of j, and its eigenvectors are linear combinations of the fo

q~j!5(
j 51

J

cje
ik j (l)jwj~l!5:W~l,j!~cj ! j 51

J , ~2.11!

involving wave numberskj which are the roots of the poly
nomial det@ L̃ (k)2l1#, and J is the degree of this polyno
mial. L̃ (k) is obtained from the operatorL by taking the
latter at distancesj→`, and replacing annth spatial deriva-
tive by (ik)n. The vectorswj are normalized solutions of th
linear homogeneous equations

@ L̃ ~kj !2l1#wj50. ~2.12!

For a givenq, the coefficientscj may be determined from
Eq. ~2.11! at gridpointjN . In case ofJ52S as in the MT
equations~2.10!, W is quadratic. Hence

q~jN11!5W~l,jN! diag~s je
ik(l)Dj! j 51

2S ~cj ! j 51
2S

5W~l,jN! diag~s je
ik(l)Dj! j 51

2S W~l,jN!21q~jN!,

~2.13!

where, in general,s j51. However, in order to suppress e
ponentially increasing partial waves in the iterative sche
we put s j50 for kj (l)9,0. In systems with second orde
spatial derivatives,J.2S. Here, we simply omit the terms
with kj (l)9,0 in Eq.~2.11! and, once again,W is quadratic
and we may apply Eq.~2.13! as described. For higher deriva
tives, the coefficientscj have to be computed from Eq
~2.11!, also involvingq(jn) for n,N.

Expression~2.13! may be inserted into Eqs.~2.6! and
~2.7!, giving the derivatives at gridpointjN in dependence on
l, q(jN21), andq(jN), but not onq(jN11). The derivatives
at gridpoint j2N11 are treated in the same way. By th
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method, one is led to an eigenvalue problem for a matrixL
of dimension 4SN34SN, depending explicitly on the eigen
valuel,

@L~l!2l1#q50, ~2.14!

whereq now stands for a 4SN-component vector.
A determination in this manner of all eigenvalues asso

ated with an instability would require a search of all routes
the complex plane of the secular equation following fro
Eq. ~2.14!. This would go beyond our numerical capacitie
Instead, we use this approach to accurately determine ce

FIG. 1. Dependence of the eigenvaluesl5l81 il9 associated
with an oscillatory instability on the domain sizeL. MT equations
~2.10! with N151 and N250. v520.9 @~a! and ~b!# and v
520.1 ~c!. Inlays in ~b! and ~c!: real ~solid! and imaginary
~dashed! parts ofU1 . Branches of eigenvalues that are dominan
L510 are shown as diamonds or crosses. The corresponding v
for L5` are indicated by thin solid lines.
i-

.
ain

eigenvalues corresponding to the dominant instabilities.
do this by inverse iteration, as described in Ref.@25#, starting
with initial guesses ofl0 for the eigenvalue andq0 for the
eigenvector, whereq0* •q051. The initial guess is usually
motivated by the results of calculations for a large but fin
spatial domain size. In themth step of the iteration, the ei
genvalue is updated according to

lm115lm1
s

qm* •vm11

, ~2.15!

wheres51, andvm11 satisfies

@L~lm!2lm1#vm115qm . ~2.16!

The vector qm11 is then defined as qm11

5vm11 /Avm11* •vm11.
In the case of diagonalizable matrices that are indep

dent ofl, this procedure converges quickly. The reason,
explained in Ref.@25#, is easily seen when expressingvm11
andqm5(nanan as a linear combination of the normalize
eigenvectors ofL. If lm is close to the eigenvaluel̃0 of L
and sufficiently distant from the other eigenvaluesl̃n , n
Þ0, then

vm115(
n

an

l̃n2lm

an'
a0

l̃02lm

a0 . ~2.17!

However, ifL is dependent on the eigenvalue, a conv
gence of the procedure is not guaranteed. It deteriorate
the corresponding eigenvalue moves close to other eigen
ues of the matrix. To improve convergence, it is often fav
able to vary the initial guess for the eigenvalue and eig
vector and to modify the update of the eigenvalue
choosing the parameters in Eq. ~2.15! to be smaller than 1.
Further statements on the convergence of the procedur
the case ofL depending onl are made in Appendix A.
Eigenvalues determined in this way for solitary waves of
MT equations, being of the form

u6~j,t!5U6~j!exp~2 ivt!, ~2.18a!

with

U1~j!5U2* ~j!5U~j!, ~2.18b!

are shown in Fig. 1 as horizontal lines.

III. HIGHER-ORDER DISPERSION TERMS
IN THE MT EQUATIONS

In a recent work, Champneyset al. @18# analyzed an ex-
tension of MT equations which differ from Eq.~2.10! by the
additional termD]2u1 /]j2 on the left-hand side of Eq
~2.10a! andD]2u2 /]j2 on the left-hand side of Eq.~2.10b!.
This addition removes the gap in the linear dispersion re
tion of Eq.~2.10! ~Fig. 2!. However, the authors were able
show by numerical analysis that stationary single solit
wave solutions of the form of Eq.~2.18! exist on certain
curves in the v-D plane. Once a stationary solutio
U(j;v,N1 ,N2 ,D) is found, a solutionU(j;v,N18 ,N28 ,D)

t
es
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5834 PRE 61J. SCHÖLLMANN AND A. P. MAYER
for the same values ofv and D but different values of the
constants in front of the nonlinear terms may be obtained
a simple rescaling. This also applies to the stationary s
tions of Eq.~3.1! below.

The three stationary single solitary wave solutions giv
in Figs. 3~a!–3~c! of Ref. @18# are found to be unstable b
our numerical stability analysis for different values ofN1.
~In the whole of this section,N251.! The eigenvalues cor
responding to the dominant instabilities are given in Tabl

FIG. 2. Linear dispersion relation corresponding to Eq.~3.1!.
Dashed line:D51 andL50. Solid line:D51/4 andL51.

FIG. 3. Dependence onN1 /N2 of certain eigenvaluesl5l8
1 il9 occurring in the linear stability analysis of a multihump so
tary wave solution of Eq.~3.1!. D51/4, L51, and v50. We
show translational instability~diamonds!, oscillatory instabilities
~crosses!, and internal modes~stars!. Hatched area: continuou
spectrum ofL . The inset shows the intensity~solid line! and the
real ~dashed line! and imaginary~dotted line! parts of the solitary
waveU at N151 andN250.
y
u-

n

I.

Because of the fairly large growth rates, it was possible
determine these eigenvalues in calculations for a finite s
tial domain and periodic boundary conditions. Special att
tion has to be paid to the fact that in this system, eigenv
tors associated with purely real eigenvalues can still hav
large spatial extension because of the absence of a gap i
linear spectrum. This has in fact been observed in the cas
small growth rates.

When considering the evolution equations~2.10!, with or
without an additional second-derivative term, one has to b
in mind that their linear part correctly describes the disp
sion relation of the linear excitations in the underlying pe
odic physical system only for wave vectors near the edge
the Brillouin zone. For small values of the parameteruDu, the
wave vector of the radiation coupling resonantly to a solita
wave becomes large and, with decreasinguDu, one leaves the
regime of the validity of the envelope approximation whi
is the basis for Eq.~2.10!. A possibility to avoid such prob-
lems and keep the gap open even at large wave vectors
add further correction terms to the left-hand sides of E
~2.10!, for example by considering terms that lead to t
following equations:

i S ]u1

]t
1

]u1

]j D1u21@N1uu1u21N2uu2u2#u1

1D
]2u1

]j2 1L
]2u2

]j2 50, ~3.1a!

i S ]u2

]t
2

]u2

]j D1u11@N1uu2u21N2uu1u2#u2

1D
]2u2

]j2 1L*
]2u1

]j2 50. ~3.1b!

The additional terms involving the complex parameterL are
motivated in the Appendixes for an extension of the origin
Mills-Trullinger system, where, however, this coefficie
would be too small to open the gap, and for the continu
treatment of the diatomic chain. They preserve the conse

TABLE I. Eigenvalues corresponding to instabilities with max
mal growth rates for the solitary wave solutions given in Fig. 3
Ref. @18#.

D N1 l8 l9

1.34759a 0.0 1.96 0.0
1.0 0.53 1.75
6.0 1.01 2.77

0.53350a 0.0 1.91 0.0
1.0 0.50 2.60
6.0 0.95 4.06

0.30595a 0.0 1.96 0.0
1.0 0.48 3.34
6.0 1.18 4.46

aValues given in Ref.@18#. Frequencyv520.8, N251.
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tion laws of the MT equations. In particular, the ansatz~2.18!
reduces Eqs.~3.1! to ordinary differential equations that hav
a first integral@see Eq.~B5!#.

In the following, we chooseL to be real for convenience
in the numerical calculations. The linear dispersion relat
for the system of equations~3.1! is shown in Fig. 2. For fixed
values of the parameters in Eqs.~3.1!, a one-parameter fam
ily of gap solitary wave solutions of the form of Eq.~2.18! is
found. As an example, the solution with frequencyv50 is
shown in Fig. 3~inlay!. It exhibits a multihump structure
When analyzing the stability of this solution as a function
N1 for fixed N251, it was found to be always unstable, b
the character of its instability changes strongly asN1 is var-
ied. For small values ofuN1u, a translational instability domi-
nates with a growth rate amounting to'0.8 atN150, which
dramatically increases asN1 becomes negative. AtN1
'3.8, the translational instability terminates and, in addit
to three internal modes, an oscillatory instability remai
though with a very small growth rate. Consequently, solit
wave solutions of Eqs.~3.1! having the same functional form
exhibit completely different instability scenarios for differe
values ofN1. This has been verified in numerical simulatio
~Fig. 4!. The translational instability leads to a splitting
the initial multihump pulse shape, accompanied by a con
erable amount of radiation. In contrast to this behavior,
oscillatory instabilities lead to a decay of the solitary wa
into short-wavelength fluctuations. In these simulations,
instabilities were not seeded, but developed out of numer
noise.

FIG. 4. Time evolution of the multihump stationary solita
wave of Fig. 3. N150 ~a! and N156 ~b!. Inlay: uu1(j,10)
2U(j)u ~solid line! and @„a18 (j)…21„a19 (j)…2#1/2 ~dashed line!,
where a18 and a19 are components of the real eigenvector ofL
corresponding to the translational instability.
n

f

n
,
y

d-
e

e
al

Both the growth rate and the eigenvector of the instabi
have been precisely identified in simulations for the case
the translational instability@see the inlay of Fig. 4~a!#. This
has been possible to a less satisfactory extent in the cas
oscillatory instability, because of the presence of seve
complex eigenvalues in close vicinity to each other, and
cause of the fact that simulations can only be done fo
finite spatial range. Nevertheless, the growth rate of
dominant oscillatory instability was identified over a certa
time interval.

For very small values ofL andD, chosen such that ther
is still a gap in the spectrum of linear excitations@L50.3,
D50.0 ~i!; L50.3, D50.01~ii !; andL50.3, D50.1 ~iii !#,
single-hump solitary wave solutions have been found hav
shapes very similar to that of the Mills-Trullinger solution
The other parameters in Eqs.~2.18! and~3.1! have been cho-
sen,v50.5, N251, andN150, in order to be close to the
integrable case. In the numerical stability analysis applied
solutions as described in Sec. II for several finite rangeL
and periodic boundary conditions, no eigenvaluesl with
nonzero real parts have been found in case~i! except spuri-
ous ones which are associated with the discretization
cases~ii ! and ~iii !, eigenvalues with very small real par
ul8u,0.02 occur withl8 depending onL in a somewhat
random fashion. This behavior also occurs in analogous
vestigations of the MT equations in a parameter reg
where the solitary waves are supposed to be stable. Th
fore, we expect the three solutions~i!–~iii ! to be actually
stable.

In addition to the above linear stability analysis of sing
hump solutions of Eqs.~3.1! which are close to the MT
solitary waves, numerical simulations have been carried
on the evolution equations~3.1! with initial conditions att
50 corresponding to a pulse solution withL5D50 to
monitor the evolution of MT solitary waves exposed to t
influence of small second-order derivative terms. The para
eters were againv50.5, N150, andN251. In the caseL
50.3 andD50.1 ~open gap!, the pulse largely retains its
shape over time intervals oft.200 after having shed som
radiation. ForL50 andD50.1 ~closed gap!, the pulse splits
after comparatively short times (t'20) in a scenario similar
to that of Fig. 4~a!. These findings indicate that, in the a
sence of a gap, the second-derivative term involving the
rameterD plays a destabilizing role.

IV. GAP SOLITARY WAVES VIA THREE-WAVE MIXING

Stationary gap solitary waves have also been studied
systems with second-order nonlinearity. Recently, Maket al.
@17# considered a three-wave mixing situation described
the following evolution equations:

i S ]u1

]t
1

]u1

]j D1u21u3u2* 50, ~4.1a!

i S ]u2

]t
2

]u2

]j D1u11u3u1* 50, ~4.1b!

2i
]u3

]t
2qu31D

]2u3

]j2 1u1u250. ~4.1c!
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In the limit of largeq, they reduce to the classical field equ
tions of the massive Thirring model, i.e., the integrable lim
of the MT equations@Eq. ~2.10!, with N150].

Stationary solitary wave solutions were obtained via
ansatzus(j,t)5Us(j)exp(2ivst), s51, 2, and 3, with
U152U2* , U3 real, andv352v152v2. To follow the no-
tation of Ref. @17#, we introduce the parameterk as k5
2v1. Mak et al. checked the stability of these solutions b
simulation of their propagation. In this way, they determin
boundaries of stability in two-dimensional subspaces of
three-dimensional parameter space.

We have applied the numerical linear stability analy
described in Sec. II to stationary solitary waves on cert
lines in theq-D plane of this parameter space. For this p
pose, the solitary wave solutions have been recomputed
the help of the shooting method, making use of the fact t
the quantity

I 52~k1U3!uU1u21U1
21U1*

21~4k1q!U3
22DS ]U3

]j D 2

~4.2!

is independent ofj.
For those solitary waves that have been found to be

stable, the dominant instability is of oscillatory character.
Fig. 5, eigenvaluesl5l81 il9 are shown as functions o
the parameterq for four different values ofD. The goal of
these calculations was to find the valuesqc , where the

FIG. 5. Dependence of the eigenvaluesl5l81 il9 associated
with an oscillatory instability on the parameterq for stationary soli-
tary solutions of Eq.~4.1!, k50.1. Squares: extrapolated values f
qc . The vertical lines in~a! indicate the values ofqc following from
Fig. 4~b! of Ref. @17#. The total hatched region in~b! is part of the
continuous spectrum of the operatorL , and the doubly hatched
region is part of the continuous spectrum of the operatorM (1) in Eq.
~2.3!.
t

e

e

s
n
-
ith
at

n-

growth rates associated with the oscillatory instability va
ish. Therefore, the curves in Fig. 5 have been truncated a
arbitrary point at their left end. The critical valuesqc are
considerably larger than those following from the stabil
boundaries given in Fig. 4~b! of Ref. @17# for all four values
of D, which illustrates the difficulty of detecting weak osci
latory instabilities in numerical simulations.

In our numerical calculations of the eigenvalues asso
ated with the oscillatory instability, we find that the point
the l9(q) curve, where the growth ratel8 vanishes, is situ-
ated inside the continuous spectrum. For the MT equatio
Barashenkovet al. @20# showed that the oscillatory instabi
ity emerges at the point of degeneracy of two internal mo
frequencies with a small separation from, but not inside,
continuous spectrum. With our numerical tools, we were
able to identify a mechanism for the creation of an oscil
tory instability in the continuous spectrum.

V. CONCLUSION

In summary, a numerical linear stability analysis has be
carried out for stationary solitary wave solutions of evoluti
equations that may be regarded as extensions of the M
Trullinger equations describing gap solitary waves in s
tems with third-order nonlinearity. Higher-order dispersi
terms have been introduced into these equations, extend
model considered in Ref.@18# @model ~i!#, and a model de-
scribing a three-wave mixing configuration in a system w
second-order nonlinearity discussed in Ref.@17# @model~ii !#.
In certain limits of the parameters occurring in these eq
tions, they reduce to the integrable classical field equati
of the massive Thirring model.

In model ~i!, it has been found that by varying the rat
between the two coefficients in front of the nonlinear ter
that represent cross-phase and self-phase modulations
instability scenario of the same multihump solitary wave s
lution can be strongly changed. In the case of domin
cross-phase modulation, the solitary wave is highly unsta
to a splitting into two pulses. When self-phase modulat
dominates, oscillatory instabilities with small growth rat
remain. In model~ii !, boundary points of oscillatory insta
bilities have been computed on lines in parameter space
a precision that is difficult to achieve in numerical simul
tions. It has been found that the growth rate associated w
the oscillatory instability vanishes at points in parame
space when the corresponding frequency lies in the cont
ous spectrum of the linearized evolution equations, indic
ing that the mechanism discovered by Barashenkovet al.
@20# for the birth of the oscillatory instability in the MT
equations does not seem to apply here. It is still an o
question what leads to this type of instability in this syste
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APPENDIX A: CONVERGENCE PROPERTIES OF THE
MODIFIED INVERSE ITERATION PROCEDURE

Assuming that the non-Hermitian matrixL(lm) can be
diagonalized at each stepm of the iteration, the following
statements concerning the convergence of the iteration
be made. Letl* be the correct eigenvalue we want the pr
cedure to converge to, andDm5lm2l* . In addition, we
define the vectorsan , n51, . . . ,4SN, as the right eigenvec
tors of the matrixL(l* ) normalized according toan* •an

51 andbn* , n51, . . . ,4SN, as left eigenvectors of the ma
trix L(l* ), such thatbm* •an5dmn . a0 is the right eigenvec-
tor andb0* the left eigenvector associated with the eigenva
l* . We also assume that the initial guess for the eigenva
is already close tol* and not close to other eigenvalues
L(l* ). Representing the vectorsqm as linear combinations
of the vectorsan and bn , and expanding in powers ofDm ,
one finds that~i! if b0* •q0 is not small~i.e., not to first or
higher order inD0), then q15a01O(D0); and ~ii ! Dm11

5(12sk)Dm1O(Dm
2 ), where s is the free parameter in

Eq. ~2.15!, and

k512b0* •F ]

]l
L~l!ul5l

*
Ga0 . ~A1!

From the latter statement we may conclude that for matr
that do not depend onl, the inverse iteration scheme co
verges rapidly ifs is chosen to be 1. For values ofs be-
tween 1 and 0, the convergence is slower but will still ta
place. In the case of the matrixL depending onl, conver-
gence may not be guaranteed ifkÞ1, even if one starts with
an initial guess close to the correct valuel* . However, it
may be achieved by choosing the parameters appropriately.

Among the assumptions made to reach statements~i! and
~ii !, the one concerning sufficient distance of the initial gu
from other eigenvalues ofL is probably the most difficult to
meet in the systems investigated here. Therefore, con
gence can be very slow, and the eigenvalues and eigen
tors may undergo considerable jumps from one iteration s
to the next.

APPENDIX B: LINEAR CORRECTIONS TO THE
MT EQUATIONS

Linear correction terms to the MT equations can be
rived in the system originally considered by Mills and Tru
linger @4#, namely, the propagation of light through a m
dium with a periodically varying dielectric constant«(z).
Expanding« in a Fourier series, keeping only the lowest tw
Fourier components«(z)5«012«1 cos(Gz)12«2 cos(2Gz
1f), wheref is a constant, introducing a stretched coor
nate z, letting e1 , e2, and ]/]z be of first order in some
expansion parameterh, and expanding to fourth order inh,
one finds the following extended version of equations~3.1!
of Ref. @4#:
an
-

e
e

s

e

s

r-
ec-
p

-

-

@v22vG
2 1O~h2!#E61v2

«1

«0
@11O~h!#E7

6 i4
vG

2

G
@11O~h!#

]E6

]z
1

c2

«0
@11O~h2!#

]2E6

]z2

22v2
«1«2

«0
ke6 if

]2E7

]z2 1~nonlinear terms!50,

~B1!

where k5@3(3G/2)21«0(v/c)2#/@(3G/2)22«0(v/c)2#3.
Note that there is no first-derivative term}]E7 /]z, and that
the coefficient in front of]2E7 /]z2 may be complex with a
phase factor different from the one in front ofE7 . Due to
the factor«1«2, the coefficient in front of the second deriva
tive of E7 in Eq. ~B1! is much smaller than the one in fron
of the second derivative ofE6 .

This need not be the case in analogous equations ari
in the continuum treatment of stationary spatially localiz
vibrations with frequencies in the phonon gap of a diatom
linear chain. Based on such a continuum approximation,
solitary waves in diatomic chains with quartic anharmonic
~third-order nonlinearity! were discussed in Refs.@26–28#.
We follow and extend these derivations here. In the follo
ing, we consider a diatomic chain with harmonic on-site
teraction, nearest and second-nearest neighbor intersite i
action, and quartic anharmonic on-site and nearest-neigh
intersite interaction.u( l ,k) is the displacement of the par
ticle belonging to sublatticek51 and 2 in the elementary
cell l . The particle displacements have to obey the equati
of motion

@M2DM #ü~ l ,1!52f1$2u~ l ,1!2u~ l ,2!2u~ l 21,2!%

2@f22Df#$2u~ l ,1!2u~ l 11,1!

2u~ l 21,1!%2@K22DK#u~ l ,1!

2K4@u~ l ,1!#32F$@u~ l ,1!

2u~ l ,2!#31@u~ l ,1!2u~ l 21,2!#3%,

~B2a!

@M1DM #ü~ l ,2!52f1$2u~ l ,2!2u~ l ,1!2u~ l 11,1!%

2@f21Df#$2u~ l ,2!2u~ l 11,2!

2u~ l 21,2!%2@K21DK#u~ l ,2!

2K4@u~ l ,2!#32F$@u~ l ,2!

2u~ l 11,1!#31@u~ l ,2!2u~ l ,1!#3%.

~B2b!

The deviations,DM from the average particle mass and t
deviations Df and DK from the average second-neare
neighbor and on-site force constants are sufficiently sm
that the linear terms resulting from the deviation from t
monatomic chain are of the same order of magnitude as
nonlinear terms. In the latter, we choose the on-site fo
constant to be the same for the two sublattices.

Stationary solutions are sought with the ansatz
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u~ l ,k;t !5~21! le2 ivtAk„x~ l !…1c.c., ~B3!

and the rotating wave approximation is used, which cor
sponds to neglecting higher time harmonics. The freque
v has to be equal to or close to the frequencyv0 at the
Brillouin zone boundary of the diatomic chain in the absen
of nonlinear terms, andDM ,Df,DK50 @v0

25(2f114f2

1K2)/M .# In Eq. ~B3!, x( l ) is the center of mass of thel th
elementary cell with its atoms at their rest positions, and
definea5x( l 11)2x( l ) as the lattice constant of the chai
One may now letAk(x) be continuous functions ofx, and
expandAk„x( l 61)…5Ak„x( l )…6a]Ak„x( l )…/]x1•••. De-
fining new variablesU6(x/a)5A1(x)6 iA2(x) and combin-
ing Eqs.~B2a! and ~B2b!, we arrive at the following equa
tions up to terms of orderO(a3,Dfa2):

VU656 i
]U6

]j
1lU71D

]2U6

]j2 1~L86 iL9!
]2U7

]j2

6Si
]3U6

]j3 1@N1uU6u21N2uU7u2#U61N3U7
2 U6* ,

~B4!

with coefficients

V5M ~v22v0
2!/f1 , l5@DMv224Df2DK#/f1 ,

D5f2 /f1 , S51/6,
n

v.

hy

r,
-
y

e

e

L852Df/f1 , L951/2,

N153@F1K4/4#/f1 , N252N1 ,

N353@2F1K4/4#/f1 ,

and j5x/a. Derivatives in the nonlinear terms have be
neglected. It may be noted that in the special caseK4
54F, the additional nonlinear term in Eq.~B4! vanishes.
Even in the presence of this term, one may seek station
solitary wave solutions employing the ansatzU15U2* 5U.
The complex ODE resulting from Eq.~B4! then has a first
integral

I 52VuUu21
l

2
~U21U* 2!1DU]U

]j U
2

1
1

2 FL* S ]U

]j D 2

1LS ]U*

]j D 2G1 iSF]U*

]j

]2U

]j2 2
]U

]j

]2U*

]j2 G
1

1

2
~N11N2!uUu41

1

4
N3@U* 41U4#. ~B5!

It should also be noted that Eq.~B4!, like Eq. ~B1!, does not
contain a first derivative cross term, i.e., a term}]U6 /]j. If
there were such a term, the reductionU15U2* would no
longer give rise to a first integral of the form of Eq.~B5!.
E

ys.

a,

r-

-

et-
-

s.
@1# B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, a
J. E. Sipe, Phys. Rev. Lett.76, 1627~1996!.

@2# E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys. Re
Lett. 67, 2295~1991!.
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